Best proximity point theorems for α-nonexpansive mappings in Banach spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

Generalized α-nonexpansive mappings in Banach spaces

We consider a new type of monotone nonexpansive mappings in an ordered Banach space X with partial order . This new class of nonlinear mappings properly contains nonexpansive, firmly-nonexpansive and Suzuki-type generalized nonexpansive mappings and partially extends α-nonexpansive mappings. We obtain some existence theorems and weak and strong convergence theorems for the Mann iteration. Some ...

متن کامل

Best proximity point theorems in 1/2−modular metric spaces

‎In this paper‎, ‎first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points‎. ‎Finally‎, ‎as consequences of these theorems‎, ‎we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces‎. ‎We present an ex...

متن کامل

On Best Proximity Point Theorems and Fixed Point Theorems for p-Cyclic Hybrid Self-Mappings in Banach Spaces

and Applied Analysis 3 Df (y, x) − Df (x, y) = 2 (f (y) − f (x)) − ⟨y − x, f 󸀠 (x) + f 󸀠 (y)⟩ ,

متن کامل

best proximity pair and coincidence point theorems for nonexpansive set-valued maps in hilbert spaces

this paper is concerned with the best proximity pair problem in hilbert spaces. given two subsets $a$ and $b$ of a hilbert space $h$ and the set-valued maps $f:a o 2^ b$ and $g:a_0 o 2^{a_0}$, where $a_0={xin a: |x-y|=d(a,b)~~~mbox{for some}~~~ yin b}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in a$ such that $$d(g(x_0),f(x_0))=d(a,b).$$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2015

ISSN: 1687-1812

DOI: 10.1186/s13663-015-0413-3